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LETTER TO THE EDITOR 

Pressure and stress tensor expressions in the fluid 
mechanical formulation of the Bose condensate equations 

J Grant 
Aerodynamics Department, Royal Aircraft Establishment, Farnborough, UK 

Received 29 August 1973 

Abstract. It is shown that a momentum equation 
a a 

- ( p u , ) + - ( P r r t u j + p ~ t j -  Otj’) = 0, 
at a 4  

identical in form to that of the familiar Navier-Stokes fluid, can be derived for 
the fluid condensate of a weakly interacting Bose gas. For the condensate the 
pressure is given by the simple barotropic relation p = p2/4, while the anisotropic 
stress tensor 3,; depends only on the density and density gradients and is given by 

OIj’ = - Pa2P - --) aP aP (4p)- ’ .  
(ax, ax, ax, ax, 

During the past decade the condensate of a gas of weakly interacting Bose particles 
has frequently been studied as a model for liquid helium near absolute zero. Gross 
(1963) has shown that when all the particles comprising the Bose gas are ‘condensed’ 
into the lowest state the system can be described by a macroscopic wavefunction 
$(x, t )  which satisfies the nonlinear field equation 

and also a normalization condition that 

Here M is the mass of the boson, N is the total number of particles in the condensate, 
which occupies a volume V ,  and in deriving equation (1) the repulsive potential between 
bosons x and y has been represented by a short range potential of delta function type 
vow -y). 

By writing the complex wavefunction $(x, t )  in the form 

and taking the real and imaginary parts of (l), Gross has further shown that the field 
equations assume a hydrodynamic form in which R2 and S are representative of the 
density and velocity potential respectively. Actually p = MR2 and 4 = -(E$ + S) /M 
(where EY is a constant) are a better choice for the density and potential and by suitably 
choosing the length scale, unit of mass and unit of time Roberts and Grant (1971) 
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have reduced the condensate equations to 

i P  - + V. (pu )  = 0 ,  
at 

(4) 

where 

U =  -V$, (6) 

which have a distinct fluid mechanical appearance. The normalization condition (2) 
becomes 

JvpdV = 1. (7) 

Equation (4) is the equation of continuity and equation ( 5 )  the 'Bernoulli' equation for 
the fluid. Several exact solutions of the equations (4) to (7) now exist. Roberts and 
Grant (1971), Grant (1971) and Grant and Roberts (1974) have used the equations to 
analyse the structures and oscillation spectra of vortex rings and lines and also the 
structure and effective masses of charged and uncharged impurities, while Tsuzuki 
(1971) has shown the existence of interesting nonlinear wave solutions. In some respects 
we have a fluid which is amenable to more satisfactory theoretical treatment than the 
Navier-Stokes fluid. 

From a mathematical viewpoint it is the occurrence of the term -V2p1'2/p1'2 in 
the Bernoulli equation which often makes such solutions extractable, allowing equation 
(5) to be solved for the density. So far this term has been loosely referred to as a 
'quantum pressure' term. In the hope of generating further interest in the condensate 
equations among physicists and fluid mechanicists alike it is the purpose of the present 
letter to  point out that the fluid mechanical formulation of the condensate equations 
can be carried further (Grant 1972), yielding expressions for the pressure in the 
condensate and indicating the existence and form of an anisotropic stress tensor, and 
thus allowing striking comparisons from a physical viewpoint with the familiar Navier- 
Stokes fluid. 

To see this we may first note that (unlike the Navier-Stokes equations) equations 
(4) and ( 5 )  can be obtained from a variational principle of the form 

SIjLdVdt  = 0, ( 8 )  

subject to the constraint (7), if the lagrangian L is given by 

This enables us to write down immediately some conservation laws for the system. 
Using the invariance of L with respect to an arbitrary change in xi we obtain 

) 
? (  pa+ 'I a ( a P j r a 4 )  1 ap a p  __- + -  - -- +--- 
Zf ax, 1 ax, ax, axj 4pax, ax, 
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which upon eliminating +/at using (5) reduces to 

a a 
-(pur>+ - nij = 0, 
at a.x 

where the momentum flux density tensor nij is defined by 

n r j  = p 6 , j + p U i u j - c , j ’ ,  (12) 
and the pressure p and anisotropic quantum stress tensor oij’ are given by the relations 

P2 Oij’ = - I (= a Z p  - ---) I ap ap 
4 ’  4 ax ax ax, axj 

p = -  (13) 

Equation (1 1) is identical to the momentum equation for the viscous Navier-Stokes 
fluid (see for example Landau and Lifshitz 1959, p 47). As is evident, however, 
the stress components in the condensate depend only upon the density and density 
gradients in the fluid, in contrast to those of the viscous stress tensor for the Navier- 
Stokes fluid which depend only upon velocity gradients; the pressure in the condensate 
is given by a simple baratropic relation, an interesting but unusual feature in fluid 
mechanics. 

This work was carried out while the author was at the University of Newcastle-Upon- 
Tyne and was supported by a Science Research Council Studentship. 
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